

Python Heap Libraries

Shane Kerr
<shane@time-travellers.org>
Amsterdam Python Meetup

2019-09-26

mailto:shane@time-travellers.org

Disclaimer
This presentation contains no information about
asyncio, machine learning (called “AI” these days),
Docker, Ansible, Kubernetes, Jupyter notebooks, or
blockchain.

It does talk about a very old data structure. In Python.

Lets go.

Storing Cached Data
● In DNS, information about names is cached
● Two types of lookup to cache:

– By name, like www.ns1.com

– By expiration, like 2019-09-25 19:45:13

● For names, the dict is perfect

● For expiration, the heapq library is perfect

● Mixing dict and heapq is non-trivial

Three Virtues
According to Larry Wall, the original author of the Perl programming language, there
are three great virtues of a programmer; Laziness, Impatience and Hubris.
● Laziness: The quality that makes you go to great effort to reduce overall energy

expenditure. It makes you write labor-saving programs that other people will find
useful and document what you wrote so you don't have to answer so many
questions about it.

● Impatience: The anger you feel when the computer is being lazy. This makes you
write programs that don't just react to your needs, but actually anticipate them. Or
at least pretend to.

● Hubris: The quality that makes you write (and maintain) programs that other people
won't want to say bad things about.

heapdict
● A quick search on PyPI reveals heapdict

– It’s a heap!
– It’s a dictionary!

● It’s perfect!
● Or…. is it?

– Documentation doesn’t match code
– Not super fast

● Lets start a little investigation….

What is a “heap”, anyway?

Kind of like a tree...

In a tree left is smaller,
right is bigger

In a heap,
a node is bigger than its children

100

19 36

17 3 25 1

2 7

That’s it!

Heap Operations
● Check top of heap – O(1)
● Add to heap – O(logN)
● Remove top of heap – O(logN)
● Increase key – O(logN)
● Remove key – O(logN)
● Replace top of heap – O(logN)
● Create a heap – O(N)

100

19 36

17 3 25 1

2 7

A typical heap layout
100

19 36

17 12 25 5

13 8 1 49 15 6 11

100 19 36 17 12 25 5 13 8 1 49 15 6 11

Why would I care about heaps?
● Basis for heapsort

– O(N) to build the heap
– Remove top element at O(logN) N times
– Slightly worse than quicksort, but better worst-case

● Great for priority queues
● Used for A* path finding

Python heaps

heapq
● Batteries included!
● Use any list as a heap
● C implementation

– Does not use things like custom __getitem__()

– Python implementation available

Heap libraries on PyPI (2017)

● HeapDict
● binaryheap
● heapqueue*
● fibonacci-heap-mod**

$ python3 -m pip search heap

* Library has disappeared from pypi and GitHub
** A Fibonacci heap, not a binary heap!

MOAR heap libraries on PyPI (2019)

● libheap*
● heapy
● bhpq**
● fibheap***

$ python3 -m pip search heap

* One-line whitespace fix needed to use
** Not measured under pypy3, uses Python 3.really-new feature
*** A Fibonacci heap, not a binary heap!

Accurate measurement is the beginning of all
wisdom. – Imhotep

“Meten is weten.” – Dutch saying

Benchmarking is hard… in theory
● Slight changes in memory layout

– Potential big changes in performance
– CPU caching especially impacted

● CPU affinity
– Also hyperthreading

● CPU throttling due to temperature
● And on and on and on...

Benchmarking is easy… in practice

● Put packages in requirements.txt
– pip install everything

● Test expected usage
● Test degenerate cases

– Worst-case performance important for security

import pyperf

The benchmarks

Adding stuff

ascending descending random

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

CPython heap insertion, µsec for 1K elements

heapdict[]
heapq.heappush()
pyheapq.heappush()
binaryheap.add()
heapy.push()
libheap.insert()
bhpq.add()
fibonacci_heap_mod
fibheap.fheappush()

ascending descending random

0

500

1000

1500

2000

2500

pypy heap insertion, µsec 1K elements

heapdict[]
heapq.heappush()
pyheapq.heappush()
binaryheap.add()
heapy.push()
libheap.insert()
fibonacci_heap_mod
fibheap.fheappush()

ascending descending random

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

CPython heap insertion, µsec for 1M elements

heapdict[]
heapq.heappush()
pyheapq.heappush()
binaryheap.add()
heapy.push()
libheap.insert()
bhpq.add()
fibonacci_heap_mod
fibheap.fheappush()

ascending descending random

0

1000000

2000000

3000000

4000000

5000000

6000000

pypy heap insertion, µsec 1M elements

heapdict[]
heapq.heappush()
pyheapq.heappush()
binaryheap.add()
heapy.push()
libheap.insert()
fibonacci_heap_mod
fibheap.fheappush()

Removing stuff

0

500

1000

1500

2000

2500

CPython heap removal, µsec 1K elements

heapdic.popitem()
heapq.heappop()
pyheapq.heappop()
binaryheap.extract_one()
heapy.pop()
libheap.pop()
bhpq.pop()
fibonacci_heap_mod
fibheap.fheappop()

0

50

100

150

200

250

300

350

400

450

pypy heap removal, µsec 1K elements

heapdict.popitem()
heapq.heappop()
pyheapq.heappop()
binaryheap.extract_one()
heapy.pop()
libheap.pop()
fibonacci_heap_mod
fibheap.fheappop()

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

CPython heap removal, µsec 1M elements

heapdic.popitem()
heapq.heappop()
pyheapq.heappop()
binaryheap.extract_one()
heapy.pop()
libheap.pop()
bhpq.pop()
fibonacci_heap_mod
fibheap.fheappop()

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

pypy heap removal, µsec 1M elements

heapdict.popitem()
heapq.heappop()
pyheapq.heappop()
binaryheap.extract_one()
heapy.pop()
libheap.pop()
fibonacci_heap_mod
fibheap.fheappop()

 10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0
0

20000

40000

60000

80000

100000

120000

140000
fibheap.fheappop(), µsec per input size

One Obvious Way to Do It?
● Use heapq
● Use pypy
● Consider fibonacci-heap-mod if using pypy

– Fastest (amortized) value
– May have big performance difference between operations
– Looks & feels like a ported Java library

Diagram Sources
● Binary tree:

https://en.wikipedia.org/wiki/File:Binary_tree.svg

● Heap:
https://en.wikipedia.org/wiki/File:Max-Heap.svg

● Heap as array:
https://en.wikipedia.org/wiki/File:Heap-as-array.svg

● Python “Batteries Included”:
https://commons.wikimedia.org/wiki/File:Python_batteries_included.jpg

https://en.wikipedia.org/wiki/File:Binary_tree.svg
https://en.wikipedia.org/wiki/File:Max-Heap.svg
https://en.wikipedia.org/wiki/File:Heap-as-array.svg
https://commons.wikimedia.org/wiki/File:Python_batteries_included.jpg

Links
● Original blog post

https://dnshane.wordpress.com/2017/02/14/ben
chmarking-python-heaps/

● GitHub repository
https://github.com/shane-kerr/heapbench/tree/a
ms-python-meetup

https://dnshane.wordpress.com/2017/02/14/benchmarking-python-heaps/
https://dnshane.wordpress.com/2017/02/14/benchmarking-python-heaps/
https://github.com/shane-kerr/heapbench/tree/ams-python-meetup
https://github.com/shane-kerr/heapbench/tree/ams-python-meetup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

