
File Checksums in Python:
The Hard Way

Shane Kerr <shane@time-travellers.org>

Amsterdam Python Meetup Group
2018-04-25

2 / 19

Data Hoarding

● I hate losing data.
● I don’t trust the cloud.
● Disks are big now!
● But... bad things happen to good data.
● We can use checksums to detect problems.
● Ideal world: everything “just works”.

● Block or fle system would detect & correct media issues.

● Not true for Linux RAID, ext4, XFS.
● btrfs is relatively new, ZFS is encumbered.

3 / 19

File Checksums in Bash:
The Easy Way

find . -type f -print0 | xargs -0 sha1sum > chksum

● Doesn’t handle metadata
● No parallelism
● Not THE HARD WAY

4 / 19

Python Tool

python3 fileinfo.py file1 [file2 [...]] > fileinfo.dat

● Output format:
● ASCII, line-by-line
● Context dependent, sort of command-driven
● Would not recommend �

5 / 19

Basic Algorithm (Still Not the Hard Way)

for root, dirs, files in os.walk(dir_name):
 for name in dirs + files:
 join_path = os.path.join(root, name)
 full_path = os.path.normpath(join_path)
 st = os.lstat(full_path)
 if stat.S_ISREG(st.st_mode):
 h = hashlib.sha224()
 with open(full_path) as f:
 h.update(f.read())
 hash = h.digest()
 else:
 hash = None
 output(full_path, st, hash)

6 / 19

Which Python Version?

● Python (a.k.a. Python 3, or rather CPython 3)
● Legacy Python (CPython 2)

● Started program 5 years ago, today might not bother

● pypy
● Hoping for performance gain, but actually slower

● Jython
● Just for fun

● Iron Python
● Missing crypto, weird stat values, alternate Unicode

7 / 19

File Name Issue: Localization

● File systems don’t have language
settings
● ext4 is (often) UTF-8, NTFS & VFAT are (basically) UTF-16

● Python standard libraries try to be smart
● Ask for fles in b’/home/shane’, get bytes.

● Ask for fles in ’/home/shane’, get strings (or exceptions).

● Escape output to look vaguely like Python strings
● \x9A, \u81F3, \U12003ABF

● Legacy Python
● Everything is string-ish.

8 / 19

Timestamp Issues: Python and File Times (1)

● Modern fle systems store HIGHLY PRECISE
timestamps

$ ls -l --time-style=full-iso /etc/passwd
-rw-r--r-- 1 root root 2494 2018-04-22 22:31:47.470945551 +0200 /etc/passwd

● Python usually returns time as a foating point
number
● This is an IEEE 765 double: a 64-bit foat, with only

enough for 6-digits of precision on a timestamp.
● Python 3 also returns nanosecond timestamps

● Not available on Legacy Python.

9 / 19

Timestamp Issues: Python and File Times (2)

● Reading a fle changes the Unix atime attribute
● Because of course reading a fle should update it. �
● Not pretty when we record atime, then read the fle.

● Using the O_NOATIME fag avoids this
● Not available on FreeBSD (or macOS).
● We silently mask error, if it occurs.

10 / 19

Timestamp Issues: Python and File Times (3)

● FAT fle systems use a 2-second resolution
● Every USB stick you buy is formatted with FAT

● On Linux we detect fles are on a FAT system
● We indicate in our output fle

● On other systems... ¯_(ツ)_/¯

11 / 19

Which Algorithm?

● Checksum?
● CRC?

● CRC-16? CRC-32? (both in the standard binascii library)

● Hash function?
● Cryptographic hashing?

● MD5? (Possible but people would make fun of me.)
● SHA-2? SHA-3? BLAKE2?

● Used SHA-224 (SHA-2)
● Today would use BLAKE2 (but more later...)

A B C D E

A B C D E

<<<
5

<<<
30

Wt

K t

12 / 19

Multiprocessing Model

● Pass an object around with state
● Split into major CPU-bound workloads:

1.Main thread (fnds fles, executes stat calls)

2.Worker threads (calculate hash values of fles)

3.Serializer thread (outputs value in correct order)

● All threads starts on program start
● Usually use multiprocessing not threading

● Runs multiple processes, which avoids Python’s GIL

● Special path for single-core processing
● Eliminates work of passing objects around

13 / 19

inode cache

● Unix has hard links
● Actually just diferent paths that refer to the same fle.
● Files are uniquely identifed by an inode.

● Hash calculation is expensive
● Math is hard. Oh, and reading fles requires a lot of I/O.

● Track inodes seen
● We then only have to output the inode.
● Checker can just verify inode matches.

14 / 19

Various Experiments

● Binary output
● Provides no beneft after compressing fle

● Date values cache
● Provides no beneft after compressing fle

● Use external checksum program
● 25x slow-down

● Use hex or base32 for output
● Hard to read, no beneft after compressing fle

15 / 19

Progress Display

● Waiting for 100’s of GB of fle hashes... boring
● Use stderr for progress (optionally)

● \r (carriage return) takes you back to column 1
● Each time you want new output output \r frst

● May need to output spaces over previous output

● In our case, we output fle counts and rates
● Not as sexy as ANSI-color output, but not bad

16 / 19

File Checksums in Python:
The Hard Way (Finally!)

On GitHub:

https://github.com/shane-kerr/fleinfo
● 1300 lines of heavily-commented code
● Some tests (about 700 lines)
● Not flake8 or pylint clean
● No Sphinx documentation
● Doesn’t actually validiate the results

https://github.com/shane-kerr/fileinfo

17 / 19

File Checksums in Python:
The Tape Archive Way

On GitHub:

https://github.com/shane-kerr/fv
● Similar technique, but using tar
● Stores checksums in a comment
● 400 lines of lightly-commented code
● No tests, no documentation
● No multiprocessing

● Left as an exercise to the student �

● DOES actually validate the results

https://github.com/shane-kerr/fv

18 / 19

File Checksums in Python:
The Database Way

Not (yet) on GitHub
● Put data in database (SQLite by default)
● Allows stop/restart of scan and check
● 1000 lines of uncommented code
● No tests, no documentation
● No validation
● Entertaining problem: restarting hash functions

● Can be done with ctypes or ffi or the like

● Not for BLAKE2 though...

19 / 19

Image Attributions

https://commons.wikimedia.org/wiki/File:Smaug_par_David_Demaret.jpg

https://www.redbubble.com/people/swish-design/works/28828074-i-unicode

https://nl.m.wikipedia.org/wiki/Bestand:SHA-1.svg

https://commons.wikimedia.org/wiki/File:Knox-ut-research-1942.jpg

https://commons.wikimedia.org/wiki/File:Smaug_par_David_Demaret.jpg
https://www.redbubble.com/people/swish-design/works/28828074-i-unicode
https://nl.m.wikipedia.org/wiki/Bestand:SHA-1.svg
https://commons.wikimedia.org/wiki/File:Knox-ut-research-1942.jpg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

